FEATURES

- Industrial Standard SMD Package
- ► I/O Isolation 4000VAC with Reinforced Insulation, rated for 250Vrms
 Working Voltage
- ► Low Leakage Current < 2µA
- ▶ Operating Ambient Temp. Range -40°C to 95°C
- ➤ Short Circuit Protection
- ► Medical EMC Standard meets 4th Edition of EMI EN55011 and EMS EN60601-1-2
- Medical Safety meets 2xMOPP per 3rd Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 with CE Marking

PRODUCT OVERVIEW

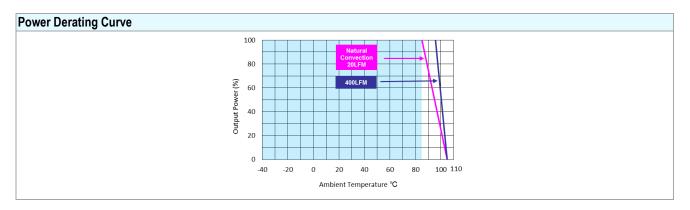
The MINMAX MSCU01M series is a new range of medical approved 1W isolated dc-dc converter within enclosed SMD-14 package which specifically design for medical applications. There are 15 models available for input voltage of 5, 12, 24VDC and 5, 12, 15, ±12, ±15VDC output. The I/O isolation is specified for 4000VAC with reinforced insulation, which rated for 250Vrms working voltage. Further features include short circuit protection, low leakage current 2µA max. and operating ambient temp. range by -40°C to 95°C without derating. MSCU01M series conform to 4th edition medical EMC standard, medical safety approval meets 2xMOPP (Means Of Patient Protection) per 3rd edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1.

The MSCU01M series offer a economical solution for demanding application in medical instrument requesting a certified supplementary and reinforced insulation system to comply with latest medical safety approval for 2xMOPP requirement.

Model Selection Gu	iide							
Model Number	Input Voltage	Output Voltage	· '		Input (Input Current		Efficiency (typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	-	@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	μF	%
MSCU01-05S05M		5	200	4	263			76
MSCU01-05S12M	_	12	84	1.68	252		220	80
MSCU01-05S15M	5	15	68	1.36	246	50	100#	83
MSCU01-05D12M	(4.5 ~ 5.5)	±12	±42	±0.84	252			80
MSCU01-05D15M		±15	±33	±0.66	236			84
MSCU01-12S05M		5	200	4	110		220	76
MSCU01-12S12M	1	12	84	1.68	106			79
MSCU01-12S15M	12	15	68	1.36	106	35		80
MSCU01-12D12M	(10.8 ~ 13.2)	±12	±42	±0.84	106			79
MSCU01-12D15M		±15	±33	±0.66	103			80
MSCU01-24S05M		5	200	4	55			76
MSCU01-24S12M		12	84	1.68	53	20	220	80
MSCU01-24S15M	(24 (20.4)	15	68	1.36	53			80
MSCU01-24D12M	(21.6 ~ 26.4)	±12	±42	±0.84	53		100"	80
MSCU01-24D15M		±15	±33	±0.66	52		100#	80

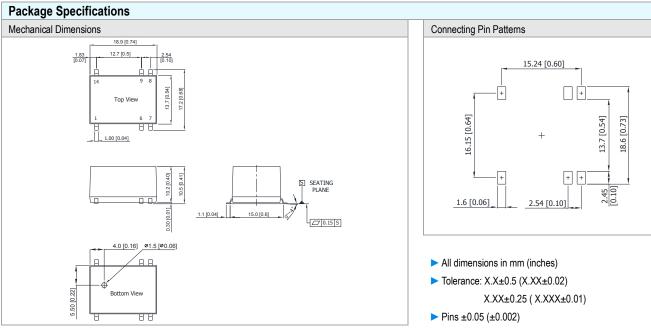
For each output

Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
	5V Input Models	4.5	5	5.5		
Input Voltage Range	12V Input Models	10.8	12	13.2	\/DC	
	24V Input Models	21.6	24	26.4		
	5V Input Models	-0.7		9	VDC	
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18		
	24V Input Models	-0.7		30		
Input Filter	All Models	Internal Capacitor				


Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy			±1.0	±3.0	%Vnom.	
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%	
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%	
Load Regulation	Io=10% to 100%			±10	%	
Ripple & Noise	0-20 MHz Bandwidth			100	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection	Continuous, Automatic Recovery					

Isolation, Safety Standards							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O location Voltage	60 Seconds	4000			VACrms		
I/O Isolation Voltage	Reinforced insulation, rated for 250Vrms working voltage	Reinforced insulation, rated for 250Vrms working voltage 4000			VACIIIS		
Leakage Current	240VAC, 60Hz			2	μA		
I/O Isolation Resistance	500 VDC	10			GΩ		
I/O Isolation Capacitance	100KHz, 1V		20		pF		
Cafat Ctandanda	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1						
Safety Standards	IEC/EN 60601-1 3 rd Edition 2xMOPP						
Safety Approvals	ANSI/AAMI ES60601-1 2xMOPP recognition (UL certificate), IEC/EN 60601-1 3 rd Edition (CB-report)						

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Switching Frequency			55		kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	4,771,507			Hours	
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Lev	el 2		


Environmental Specifications							
Parameter	Conditions	Min.	Max.	Unit			
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+95	°C			
Case Temperature			+105	°C			
Storage Temperature Range		-50	+125	°C			
Humidity (non condensing)			95	% rel. H			
Cooling	Natural Convection						
Lead-free Reflow Solder Process	IPC/JEDEC J-STD-020D.1						

EMC Specifications						
Parameter	Sta	Standards & Level				
EMI	Conduction	Conduction EN 55011, FCC part 15				
	EN 60601-1-2 4th	EN 60601-1-2 4 th				
EMS	ESD	EN 61000-4-2 Air ± 15kV , Contact ± 8kV	Α			
	Radiated immunity	EN 61000-4-3 10V/m	Α			
	Fast transient (6)	EN 61000-4-4 ±2kV	Α			
	Surge (6)	EN 61000-4-5 ±1kV	Α			
	Conducted immunity	EN 61000-4-6 10Vrms	Α			
	PFMF	EN 61000-4-8 30A/m	Α			

Notes

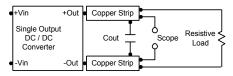
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 To meet EN 55011 Class A an external filter, please contact MINMAX.
- 6 To meet EN 61000-4-4 & EN61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- 7 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 8 Specifications are subject to change without notice.

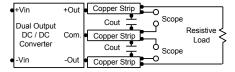
Pin Connections					
Pin	Single Output Dual Output				
1	-Vin	-Vin			
6	NC Common				
7	NC -Vout				
8	+Vout +Vout				
9	-Vout Common				
14	+Vin +Vin				

Physical Characteristics		
Case Size	:	18.9x13.7x10.2 mm (0.74x0.54x0.40 inches)
Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	:	Phosphor Bronze
Weight	:	4.1g

NC: No Connection

E-mail: sales@displaytechnology.co.uk Tel:+44(0)1634 672755

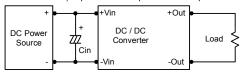



Order Code Table	rder Code Table				
Standard	For water-washable process				
MSCU01-05S05M	MSCU01-05S05M-W				
MSCU01-05S12M	MSCU01-05S12M-W				
MSCU01-05S15M	MSCU01-05S15M-W				
MSCU01-05D12M	MSCU01-05D12M-W				
MSCU01-05D15M	MSCU01-05D15M-W				
MSCU01-12S05M	MSCU01-12S05M-W				
MSCU01-12S12M	MSCU01-12S12M-W				
MSCU01-12S15M	MSCU01-12S15M-W				
MSCU01-12D12M	MSCU01-12D12M-W				
MSCU01-12D15M	MSCU01-12D15M-W				
MSCU01-24S05M	MSCU01-24S05M-W				
MSCU01-24S12M	MSCU01-24S12M-W				
MSCU01-24S15M	MSCU01-24S15M-W				
MSCU01-24D12M	MSCU01-24D12M-W				
MSCU01-24D15M	MSCU01-24D15M-W				

Test Setup

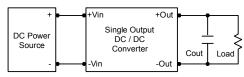
Peak-to-Peak Output Noise Measurement Test

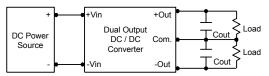
Refer to the output specifications or add $4.7 \mu F$ capacitor if the output specifications undefine Cout.. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Technical Notes

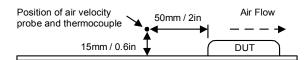
Maximum Capacitive Load

The MSCU01M series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 100µF maximum capacitive load for dual outputs and 220µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a $2.2\mu\text{F}$ for the 5V input devices, a $1.0\mu\text{F}$ for the 12V input devices and a $0.47\mu\text{F}$ for the 24V input devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

